

Pilot Test of Novel Electrochemical Membrane System for Carbon Dioxide Capture and Power Generation Hossein Ghezel-Ayagh 2016 NETL CO2 Capture Technology Meeting August 8-12, 2016 Pittsburgh, PA Ultra-Clean, Efficient, Reliable Power

Electrochemical Membrane (ECM) Technology Development Path

DE-FE0007634 Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

- Preliminary Technical and Economic Feasibility Study (PT&EFS)
- Technology Gap Identification including Effects of Trace Contaminants
- Environmental, Health & Safety (EH&S) Review
- Bench-Scale Testing of 0.2 T/D ECM (>90% Carbon Capture)

Electrochemical Membrane (ECM) Technology Development Path

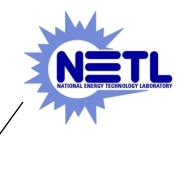
DE-FE0026580 Pilot Test of Novel Electrochemical Membrane System

for Carbon Dioxide Capture and Power Generation

- Techno-Economic Analysis (TEA) Updates Achieving 30% less COE of Baseline Supercritical PC Plant with Amin Carbon Capture
- EH&S Updates
- Design a Small Pilot Scale Plant (>40 T/D) Prototypical of a Commercial Unit
- Fabricate and Install the Pilot Scale Plant
- Conduct >2 months Tests at a Coal Plant Facility Demonstrating >90% Capture (>95% CO2 Purity)

DE-FE0007634 Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

- Preliminary Technical and Economic Feasibility Study (PT&EFS)
- Technology Gap Identification including Effects of Trace Contaminants
- Environmental, Health & Safety (EH&S) Review
- Bench-Scale Testing of 0.2 T/D ECM (>90% Carbon Capture)



ECM Project Team Structure

The FCE team is comprised of diverse organizations with expertise in key functional areas:

FuelCell Energy Inc. (FCE), Danbury, CT

 Key experience: Manufacturing and commercialization of fuel cell power plant systems in sizes ranging from 300kW to Multi-MW.

FuelCell Energy

Ultra-Clean, Efficient, Reliable Power

AECOM

Project Role: Prime Contractor

AECOM, Austin, TX

Process Technologies Organization

- Key Experience: Global leader in providing engineering, construction and technical services including pollution control systems
- Project Role: Support TEA (review ECM system design, equipment and plant costing), pilot system key equipment specification and selection, flue gas clean-up system design

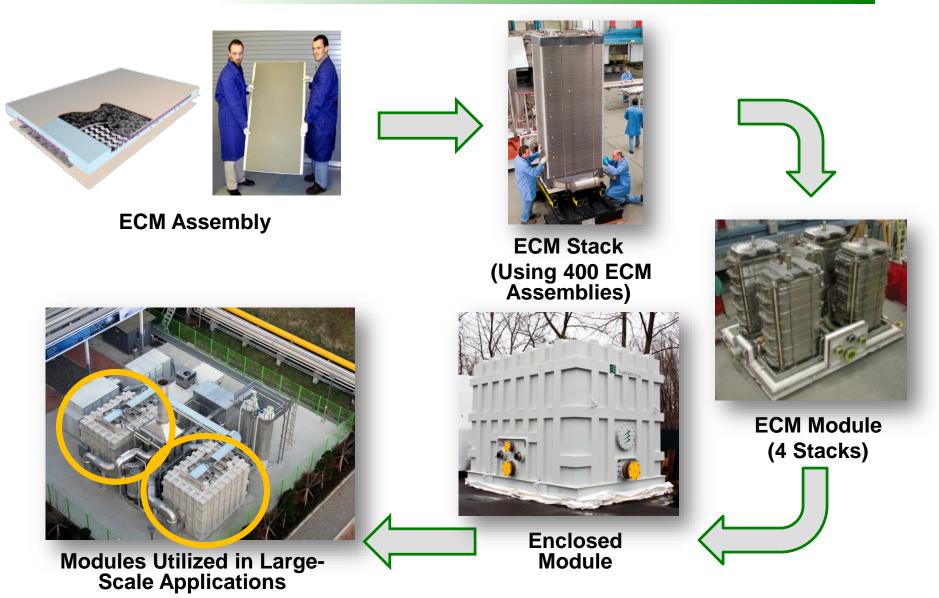
Project Schedule and Budget

Total Cost Share

		BP 1			BP 2			2 BP 3							
		Calendar Year													
	_	2015 2016 2017 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3									_	2019			
Techno-Economic Analysis (TEA) & EHS	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4 (21 Q2
Initial															
Update															
Pilot Plant BOP Design															
Pilot Plant Fabrication															
BOP Equipment															
ECM Module															
Integration and Factory Acceptance Tests															
Pilot Plant Operation															
Install															
Commission															
Test & Evaluation															
De-Commission or Continue Tests															
Budget Period 1 Budget Period 2 10/1/2015 - 12/31/2016) (1/1/2017 - 12/31/2017)	(1	Budget Perio (1/1/2018 - 3/31						Total Projec) (10/1/2015-3/31/2			-				
		overnment			Cost Share				Government				t	Cost	
	3 3				_		53,		_	\$ 1		000,		_	8,72
80.00% 20.00% 58.68% 41.32%		·		68%	_	,_		.32	_	* '	,-		.21		<u>,0,12</u>

Electrochemical Membrane (ECM) Technology Overview

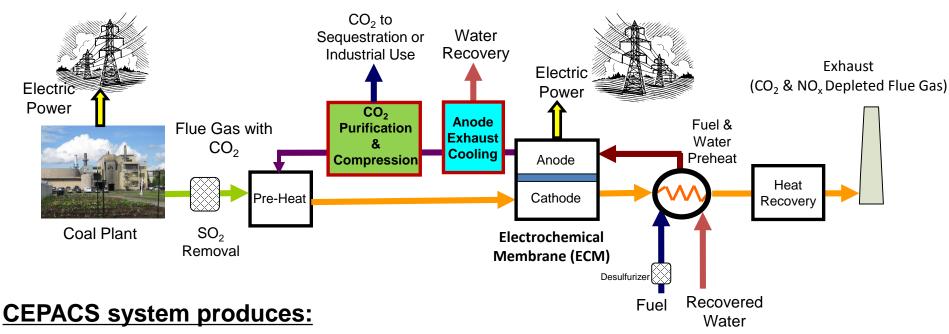
ECM Operating Principle



The driving force for CO₂ separation is electrochemical potential, not pressure differential across the membrane

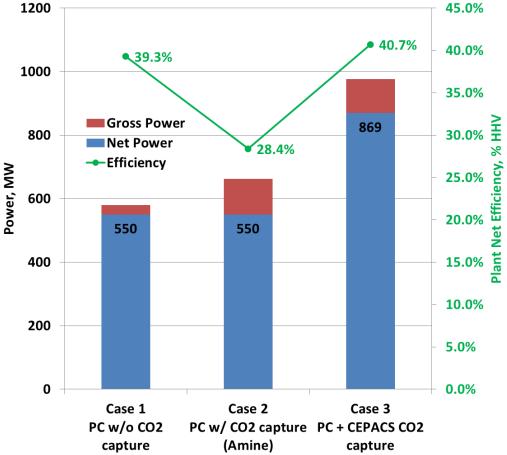
- **Net Results**
- Simultaneous Power Production and CO₂ Separation from Flue Gas of an Existing Facility
- Excess Process Water Byproduct
- Complete Selectivity towards CO₂ as Compared to N₂

Modular Technology

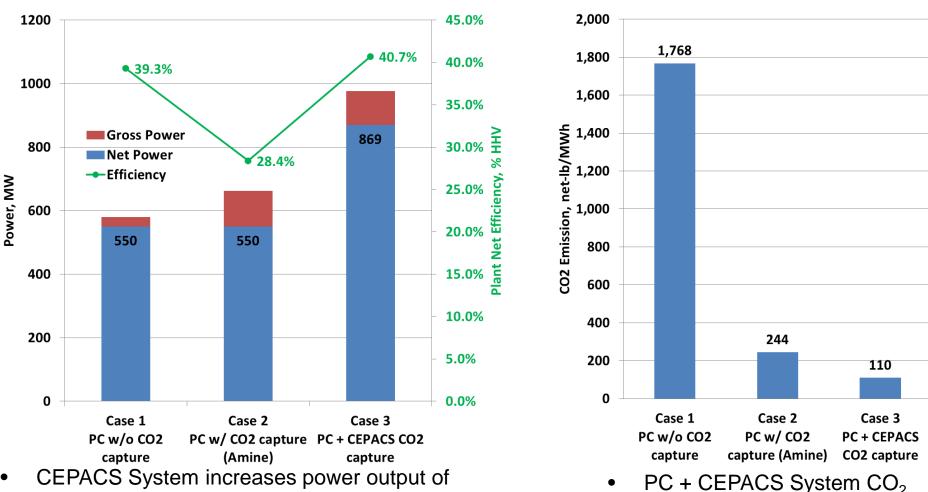


Techno-Economic Analysis

Application of ECM for CO₂ Capture from a 550MW PC Plant


<u>Combined Electric Power and Carbon-dioxide Separation (CEPACS) System</u> Concept Implementation for 550 MW Reference Supercritical PC Plant*

- Supercritical CO₂ (90% CO₂ capture from PC Plant)
- Excess Process Water
- Additional 319 MW of clean AC power @ 40.7% Efficiency (based on HHV NG)
 - * Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2a, DOE/NETL-2010/1397, September 2013.

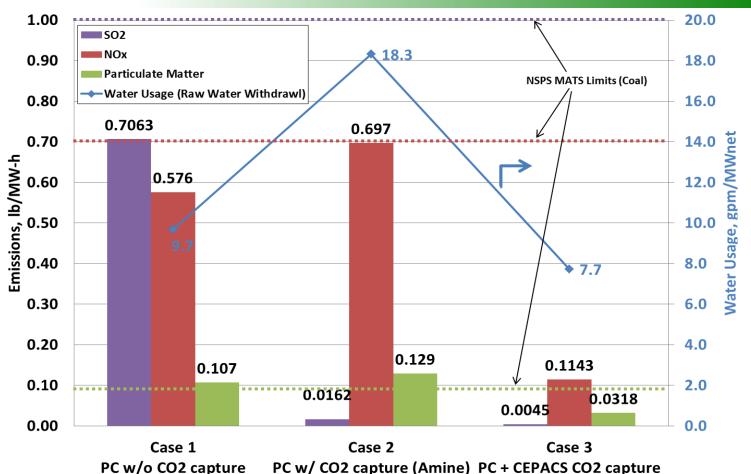

CEPACS System Performance

- CEPACS System increases power output of Baseline PC plant by 58%
- PC plant retrofitted with CEPACS system is 43% (12.3 percentage points) more efficient than amine scrubbing for carbon capture

CEPACS System Performance

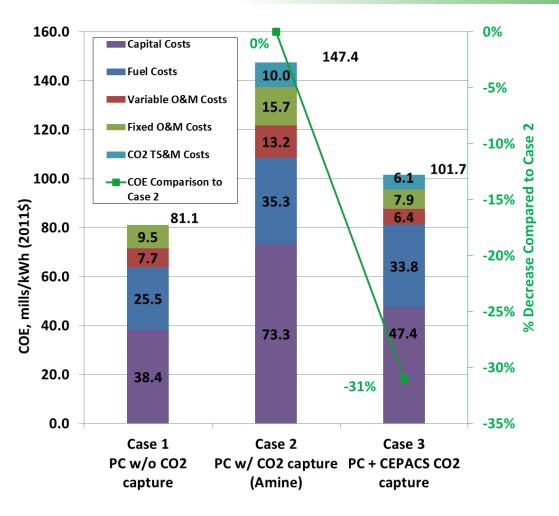
- CEPACS System increases power output of Baseline PC plant by 58%
- PC plant retrofitted with CEPACS system is 43% (12.3 percentage points) more efficient than amine scrubbing for carbon capture

Emissions are 55% lower than

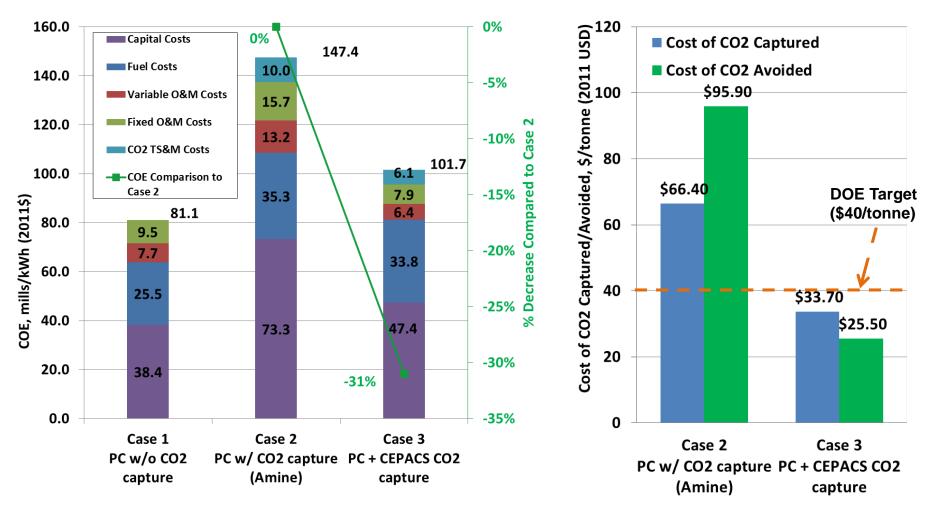

generation (vs. consumption)

PC w/ Amine due to power

@ 90% capture level


CEPACS System Performance: Emissions and Water Usage

- PC plant retrofitted with CEPACS system has lower emissions of NO_x, SO_x, and Particulate Matter (PM) than a PC plant retrofitted with Amine scrubber for CO₂ capture, below MATS limits
- CEPACS system produces excess process water, resulting in:
 - 58% less raw water withdrawal than with amine scrubbing
 - 20% less raw water withdrawal compared to baseline plant without CO₂ capture


FuelCell Energy AECOM CEPACS System Economics Ultra-Clean, Efficient, Reliable Power AECOM CEPACS System Economics

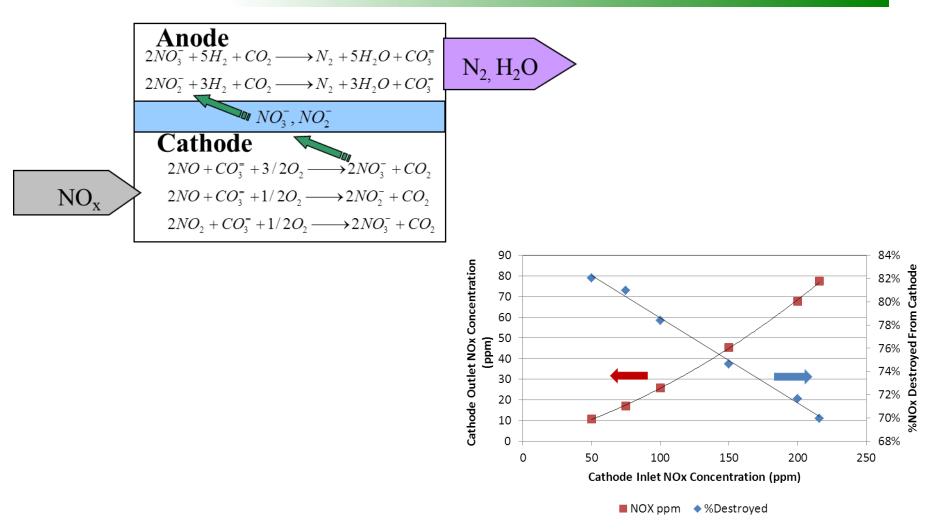
 PC plant retrofitted with CEPACS system has 31% lower COE than amine scrubbing

FuelCell Energy **AECOM** CEPACS System Economics

- PC plant retrofitted with CEPACS system has 31% lower COE than amine scrubbing
- ECM-Based CEPACS System can meet DOE Target of <\$40/tonne CO₂ captured (2011 USD)

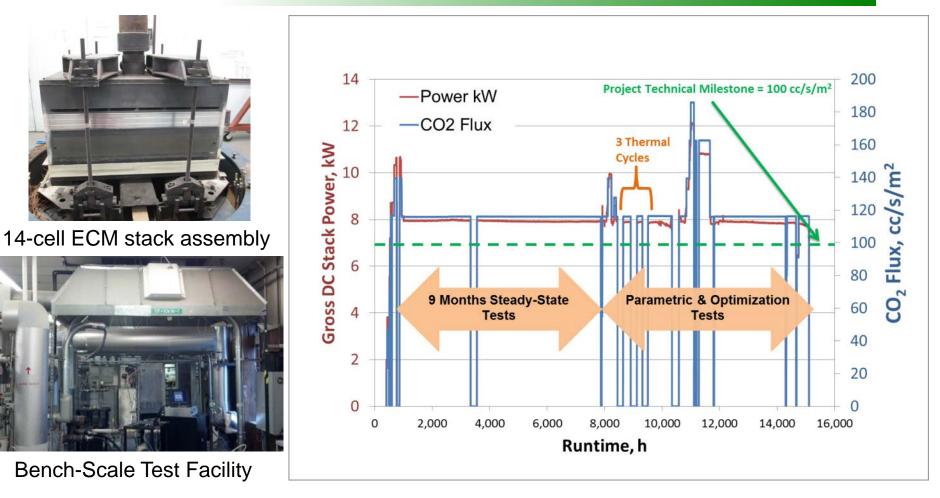
ECM Testing Results (DE-FE0007634)

- ECM Tolerance to Flue Gas Contaminants
- Bench-scale (11.7m²) ECM System


ECM Flue Gas Contaminants Tolerance: Summary

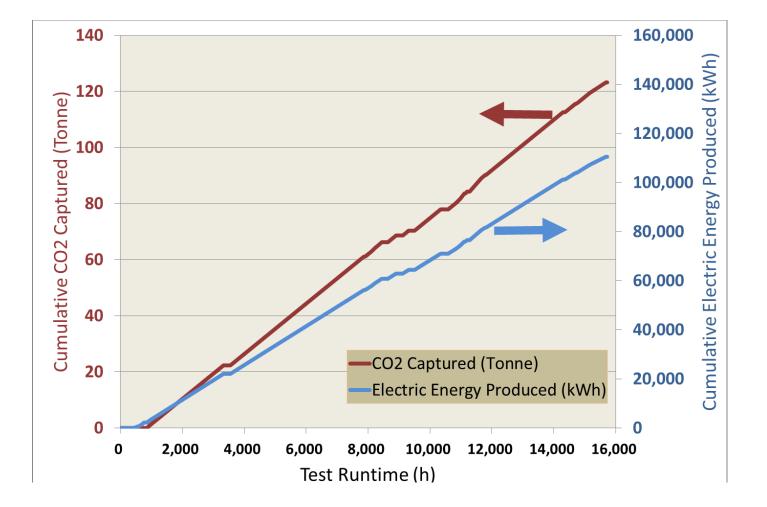
Flue Gas Contaminant	Tested by Negligil	oncentration PNNL, with ble Power adation	Concentration in Cathode Inlet Gas after Polishing FGD, Estimated by AECOM		Notes				
SO ₂	1	ppmv	0.18	ppmv	Performance losses due to short- term SO ₂ exposure up to 40ppm were fully reversible				
Se	10	ppbv	0.30	vada	No apparent degradation over 860 hours.				
Hg	250	ppbv	0.08	ppbv	Expected form is predominantly elemental Hg. No apparent degradation over 1100 hours.				
HCI	200	ppbv	12.7	ppbv	No apparent degradation over 900 hours.				

- Tests of ECM with simulated trace contaminants in the flue gas were performed at Pacific Northwest Laboratory (PNNL)
- Based on trace contaminants tests and AECOM performance estimates, a polishing wet-FGD scrubber was designed to sufficiently clean flue gas for ECM operation


ECM NO_x Removal Tests

- ECM Provides a Co-benefit for NO_x Destruction
- Test results have shown > 70% at High Inlet NO_x Concentration (200 ppm) During Carbon Capture under System Conditions

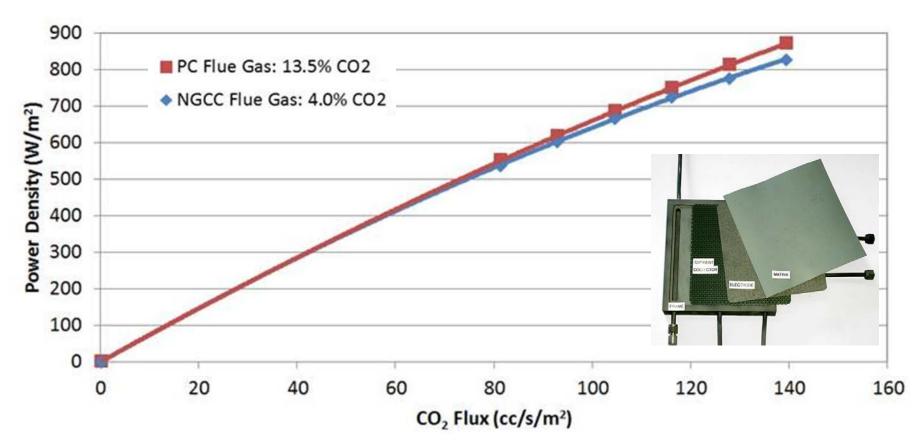
Bench-Scale Demonstration Test Results



Completed testing of CEPACS demonstration system using simulated PC flue gas:

- >100 ton/year CO₂ capture capability
- >10 kW peak power production
- 15,715 hours total runtime

Bench-Scale ECM Test Summary



Net CO₂ captured >120 Tonnes and net DC electric power generated >110MWh

ECM Single-Cell Testing: Effect of Flue Gas Composition

ECM cell performance data for NGCC and PC plant flue gases at 93% carbon capture:

- ECM is capable of operating on flue gases with a wide range of CO₂ partial pressure
- System features (e.g. supplemental air addition, product recycle) allow tuning of cathode-side composition to optimize ECM performance


Pilot Plant Design

Preliminary Pilot System Performance Estimate

MW-Class Pilot CEPACS System Performance Summary

ECM Gross Power	Rated Power				
DC Power	2015.7	kW			
Energy & Water Input					
Natural Gas Fuel Flow	216.8	scfm			
Fuel Energy (LHV)	3759.3	kW			
Water Consumption @ Full Power	0	gpm			
Consumed Power					
AC Power Consumption	(450.3)	kW			
Inverter Loss	(100.8)	kW			
Total Parasitic Power Consumption	(551.1)	kW			
Net Generation & Efficiency					
CEPACS Plant Net AC Output	1464.6	kW			
Electrical Efficiency (LHV)	39.0	%			
Carbon Capture					
Total Carbon Capture %	92	%			
CO ₂ Captured, Tons per Day	64	T/D			
CO ₂ Purity	99.6	%			

Pilot System Fabrication

Mechanical Balance of Plant (MBOP) Skids

Preheats flue gas, conditions & humidifies fuel prior to delivering to module, purifies CO_2

- Designed by FCE
- Major mechanical equipment sourced globally and assembled in MBOP skids
- Shipped directly to installation site

Electrical Balance of Plant (EBOP) Skids

Converts direct current produced by ECM to alternating current

- EBOP includes dc-to-ac invertors, transformers, and programmable logic controllers (PLCs)
- Shipped directly to installation site

Vendor-Supplied Equipment Skids

- CO₂ Compressors, Chiller, Flue Gas Polishing
- Specified by FCE / AECOM
- FCE / AECOM QC oversight
- Shipped directly to installation site

- Initial screening of several coal based power generating sites were conducted
- Two sites were investigated for detailed analysis
- Site selection criteria includes implementation cost and accessibility of the necessary infrastructure for pilot plant tests

- James M. Barry Electric Generating Station, Alabama Power/Southern Co.
- Location: Bucks, Al
- Nameplate Capacity: 1,771 MWe, Mix of Coal and Natural gas

- Abbott Power Plant, University
 of Illinois
- Location: Champaign, III
- Nameplate Capacity: 84 MWe, Mix of coal and natural gas

Captures and Concentrates Exhaust from:

- Coal power plant
- Natural gas power plant
- Industrial process

Proven Technology:

- Leverages commercial fuel cell technology
- Project underway to demonstrate MW-class pilot plant for capture from coal flue gas

JDA with **ExconMobil**

- Collaboration partner with extensive resources
 - World's largest energy company & public gas producer
 - Leading expert & experience with sequestration

Opportunity

- Integration with combined cycle gas plants
- Global market opportunity measured in Gigawatts

Economical:

- Produces additional power vs power reduction
- Generates return on capital vs operating expense

Additional Benefits:

- 70% reduction in NOx
- Clean water production

Hwaseong, South Korea 59 MW Fuel Cell System

ECM Carbon Capture from Coal Plants supported by DOE/NETL (Co-operative Agreements: DE-FE0007634 & DE-FE0026580)

Guidance from NETL team: José Figueroa, Elaine Everitt, Lynn Brickett, John Litynski, and others at NETL/DOE

Hossein Ghezel-Ayagh Director, Advanced Technology Programs 203.825.6048 hghezel@fce.com

FuelCell Energy, Inc. 3 Great Pasture Rd Danbury, CT 06810 www.fuelcellenergy.com